Interest Holde	r Santos QNT Pt	y Ltd	EMP Title Hydrau Prograf	ur Basin 2019 lic Fracturing m	Unique EMI ID No	STO3-4	Mod No.	2	Date	18/08/2020
Brief Description	The Water Resc aquifer. Identific relevant to this E changes to the E	The Water Resources Division Technical Report 20/2020 confirms the presence of a newly discovered aquifer, referred to as the Inacumba aquifer. Identification of the new Inacumba aquifer at Tanumbirini Station has subsequently triggered a change in the existing environment relevant to this EMP. This EMP modification application is required under Regulation 23 to give the Minister a notice that specifies details of the changes to the EMP.								
Geospatial Files Included?	No	No								
Does the change in existing environment result in a new, or increased, potential or actual environmental impact or risk?	If a NEW potential or actual environmental impact or risk, is it provided for in the approved EMP?	If an INCREASE in an existing potential or actual environmental impact or risk, is it provided for in the approved EMP?	Does the change in the existing environment require additional mitigation measures to be included?	Has additional stakeholder engagemen t been conducted?	Does it require additional environmental performance standards and measurement criteria?	Does it affect compliance with Sacred Site Authorit Certificates?	t D Cl re w w el Sl cl re p	oes it aff urrent ehabilitat eed, fire astewate rosion an ediment ontrol, sj mergenc esponse lans?	fect tion, , er, nd pill or Sy	Will the environmental outcome continue to be achieved and will the impacts and risks be managed to ALARP and acceptable?
No	N/A	N/A	No	No	No	No		No		Yes
Current EMP Tex	t			Ame	nded EMP Text					
Table ES-1: Summary of Environmental Values and Sensitivities Table ES-1: Summary of Environmental Values and Sensitivities										

Environmental Factors	Environmental Values and Sensitivities	Summary	Environmental Factors	Environmental Values and Sensitivities	Summary
Inland water environmental quality	Groundwater	The Cambrian Limestone Aquifer is a regional scale aquifer that provides groundwater resources for pastoral enterprises, domestic bores at homesteads and town water supplies at a number of small communities across the region. The groundwater resource in this area is understood to connect to the Roper River, where groundwater discharge supports aquatic, riparian and floodplain ecosystem function.	Inland water environmental quality	Groundwater	The Cambrian Limestone Aquifer is a regional scale aquifer that provides groundwater resources for pastoral enterprises, domestic bores at homesteads and town water supplies at a number of small communities across the region. In addition, the Water Resources Division Technical Report 20/2020 confirms the presence of a newly discovered aquifer, referred to as the Inacumba aquifer. Presently, there is limited information available regarding the regional and stratigraphic extent of the Inacumba aquifer. Its productivity as a water resource aquifer is only confirmed in a few bores within the vicinity of the Inacumba 1 well lease. The value of this aquifer as a groundwater resource is limited due to presence of overlying and highly productive water bearing formations of the Gum Ridge Formation groundwater resource in this area is understood to connect to the Roper River, where groundwater discharge supports aquatic, riparian and floodplain ecosystem function.

Inacumba -1 pilot/18

¢ E

Taxon birisi, 34784 Taxon birisi

Figure 3-4

3.3.1 Inacumba 1/1H

Following completion of the well drilling operations, the operator proposes to conduct a program of hydraulic fracture stimulations in the horizontal section of the Inacumba 1H well bore, and subsequently flow test the well. The precise interval targeted by the horizontal section of the well will be confirmed once the results of the vertical pilot well are known, but the shallowest possible target is considered to be the Amungee Member C Shale (of the Velkerri Formation). The top of this unit is prognosed to be intersected at 2,462m TVD in the vertical pilot well. The deepest aquifer at this location, based on offset well data (including water bores), is expected to be the Bukalara Sandstone. The base of this unit is prognosed to be intersected at 477m TVD. Therefore a minimum offset of 1,985m is expected between the base of the deepest aquifer and the top of the shallowest primary target of the horizontal section of the well. This significantly exceeds the minimum offset, of more than 600m, between top target zone and base aquifer as mandated by the Code of Practice.

The Bukalara Sandstone, which is stratigraphically deeper than the Top Springs Limestone was penetrated by RN040939 and RN041242 and completed as water supply and monitoring bores. The waterbores did not drill to the base of the Bukalara Sandstone.

3.3.1 Inacumba 1/1H

Surficial Deposits Gum Ridge Fm (aquife

Following completion of the well drilling operations, the operator proposes to conduct a program of hydraulic fracture stimulations in the horizontal section of the Inacumba 1H well bore, and subsequently flow test the well. The precise interval targeted by the horizontal section of the well will be confirmed once the results of the vertical pilot well are known, but the shallowest possible target is considered to be the Amungee Member C Shale (of the Velkerri Formation). The top of this unit is prognosed to be intersected at 2,462m TVD in the vertical pilot well. The deepest aquifer at this location, based on offset well data (including water bores), is expected to be within the Inacumba unit. The base of this unit is prognosed to be intersected at approximately 305m TVD. Therefore, a minimum offset of 2,157m is expected between the base of the deepest aquifer and the top of the shallowest primary target of the horizontal section of the well. This significantly exceeds the minimum offset of more than 600m, between top target zone and base aquifer as mandated by the Code of Practice.

The Inacumba unit, which is stratigraphically deeper than the Gum Ridge Formation was penetrated by RN040939 and RN041242 and completed as water supply and monitoring bores. The waterbores did not drill to the base of the Inacumba unit, which comprises the Inacumba aquifer. However using isopach data from Tanumbirini 1, the base of the Inacumba unit is expected to be at approximately 305mTVD.

Department of Environment and Natural Resources June 2020 | Version 1 Page 5 of 16

3.3.2 Tanumbirini 2H

Following completion of the well drilling operations, the operator proposes to conduct a program of hydraulic fracture stimulations in the horizontal section of the Tanumbirini 2H well, and subsequent flow testing. The primary target for the horizontal section of the well comprises the Amungee Member B Shale (of the Velkerri Formation). The top of this unit is prognosed to be intersected at 3,425m TVD. The deepest aquifer expected at this location is the Top Springs Limestone (Gum Ridge Formation). The base of this unit is prognosed to be intersected at 202m TVD. Therefore a minimum offset of 3,223m is expected between the base of the deepest aquifer and the top of the primary target of the horizontal section of the well. This significantly exceeds the minimum offset, of more than 600m, between top target zone and base aquifer as mandated by the Code of Practice.

The Bukalara Sandstone, which is stratigraphically deeper than the Top Springs Limestone, is recognised as an aquifer on a regional basis. However, based available data acquired during drilling of offset wells (including water bores) the Bukalara Sandstone is not considered to be of sufficient quality (porosity and permeability) to constitute an aquifer at this location. The base of the Bukalara Sandstone is prognosed to be intersected 582m TVD. Thus even if the Bukalara Sandstone were regarded as an aquifer at this location, the offset to the top of the target interval (3,425m TVD) would still be 2,843m; which far exceeds the minimum offset required under the Code of 600m.

3.3.2 Tanumbirini 2H

Following completion of the well drilling operations, the operator proposes to conduct a program of hydraulic fracture stimulations in the horizontal section of the Tanumbirini 2H well, and subsequent flow testing. The primary target for the horizontal section of the well comprises the Amungee Member B Shale (of the Velkerri Formation). The top of this unit is prognosed to be intersected at 3,425m TVD. The deepestaquifer at this location is recognised as the Gum Ridge Formation. The base of this unit is prognosed to be intersected at 202m TVD. Therefore, a minimum offset of 3,223m is expected between the base of the this aquifer and the top of the primary target of the horizontal section of the well. This significantly exceeds the minimum offset of more than 600m, between top target zone and base aquifer as mandated by the Code of Practice.

The Inacumba unit, which is stratigraphically deeper than the Gum Ridge Formation, is recognised as hosting an aquifer on a local basis. However, based on available data acquired during drilling of offset wells (including water bores) the Inacumba unit is not considered to be of sufficient quality to support high-yielding water supply in the vicinity of Tanumbirini 2H (inferred moderate porosity from cuttings analysis) and may not constitute an aquifer at this location. Furthermore, the availability of reliable groundwater supply from the overlying Gum Ridge Formation and the depth of the Inacumba unit comprising the Inacumba aquifer reduces its potential value as a water supply aquifer. The base of the Inacumba unit is prognosed to be intersected 582m TVD. Thus even if the Inacumba unit were regarded as a viable aquifer at this location, the offset to the top of the target interval (3,425m TVD) would still be 2,843m; which far exceeds the minimum offset required under the Code of 600m.

Department of Environment and Natural Resources June 2020 | Version 1 Page 8 of 16

3.3.3 Tanumbirini 1

The Tanumbirini 1 well was drilled to a total depth of 3946m (MD & TVD) and drilled through the Velkerri formation, which is the target for appraisal. The operator proposes to conduct a program of hydraulic fracture stimulations in various targets of the Velkerri formation, fracturing and testing the A, B, and C shales. The top of the Velkerri unit was intersected at 2,644m TVD. The deepest aquifer expected at this location is the Top Springs Limestone (Gum Ridge Formation). The base of this unit was intersected at 202m TVD. Therefore a minimum offset of 2,442m is expected between the base of the deepest aquifer and the top of the uppermost target of the Velkerri formation (Figure 3-9). This significantly exceeds the minimum offset, of more than 600m, between top target zone and base aquifer as mandated by the Code of Practice.

The Bukalara Sandstone, which is stratigraphically deeper than the Top Springs Limestone, is recognised as an aquifer on a regional basis. However, based available data acquired during drilling of offset wells (including water bores) the Bukalara Sandstone is not considered to be of sufficient quality (porosity and permeability) to constitute an aquifer at this location. The base of the Bukalara Sandstone is prognosed to be intersected 582m TVD. Thus even if the Bukalara Sandstone were regarded as an aquifer at this location, the offset to the top of the Velkerri (2,644m TVD) would still be 2,062m; which far exceeds the minimum offset required under the Code of 600m.

3.3.3 Tanumbirini 1

The Tanumbirini 1 well was drilled to a total depth of 3946m (MD & TVD) and drilled through the Velkerri formation, which is the target for appraisal. The operator proposes to conduct a program of hydraulic fracture stimulations in various targets of the Velkerri formation, fracturing and testing the A, B, and C shales. The top of the Velkerri unit was intersected at 2,644m TVD. The deepest aquifer recognised at this location is the Gum Ridge Formation (Top Springs Limestone). The base of this unit was intersected at 202m TVD. Therefore a minimum offset of 2,442m is expected between the base of the deepest aquifer and the top of the uppermost target of the Velkerri formation (Figure 3-9). This significantly exceeds the minimum offset of Practice.

The Inacumba unit, which is stratigraphically deeper than the Gum Ridge Formation, is recognised as hostring an aquifer on a local basis. However, based on available data acquired during drilling of offset wells (including water bores) the Inacumba unit is not considered to be of sufficient quality to support high-yielding water supply in the vicinity of Tanumbirini 1 (inferred moderate porosity from cuttings analysis) and may not constitute an aquifer at this location. Furthermore, the availability of reliable groundwater supply from the overlying Gum Ridge Formation and the depth of the Inacumba unit comprising the Inacumba aquifer reduces its potential value as a water supply aquifer. The base of the Inacumba unit is prognosed to be intersected 582m TVD. Thus even if the Inacumba aquifer were regarded as a viable aquifer at this location, the offset to the top of the Amungee Mbr C Shale (3,205m TVD) would still be 2,623m; which far exceeds the minimum offset required under the Code of 600m.

Department of Environment and Natural Resources June 2020 | Version 1 Page 10 of 16

 4.1.3 Geology The Velkerri Formation is overlain by other formations of the Roper Group (Maiwok Subgroup), including the Moroak Sandstone, Kyalla Formation, Bukalorkmi Sandstone and Chambers River Formation. These comprise a thick sequence of fine grained siltstones and mudstones interbedded with sandstones, which provide excellent isolation between the target zones in the underlying Velkerri Formation and the overlying aquifer (Top Springs Formation). The Roper Group sediments are unconformably overlain by Neoproterozoic sediments of the northern Georgina Basin, which constitute the Kiana Group Bukalara Sandstone at this location. On a regional basis the Bukalara Sandstone is recognised as an aquifer and has been used for agricultural purposes at Nutwood Downs and Hodgson River pastoral lease properties . Historically the Bukalara Sandstone has not been penetrated by (shallower) bores on Tanumbirini Station due to the presence of the overlying Cambrian Limestone Aquifer, and therefore was not recognised as a local aquifer. Bores RN040939 and RN041242 drilled in August and September 2019 respectively, penetrated the Bukalara Sandstone with observations of high variability in reservoir quality and possibly only a few thin intervals of higher permeability contributing to high water yield. The Bukalara Sandstone is unconformably overlain by the Cambrian age Top Springs Limestone (also known as the Gum Ridge Formation, and informally as the Cambrian Limestone is unconformably overlain by the Top Springs Limestone is unconformably overlain by the Combrian age Top Springs Limestone is unconformably overlain by the Cambrian age Top Springs Limestone is unconformably overlain by the Cambrian differentiated to be the deepest aquifer present at the proposed well locations. The Top Springs Limestone is unconformably overlain by undifferentiated Cretaceous to Quaternary sediments. 	 4.1.3 Geology The Velkerri Formation is overlain by other formations of the Roper Group (Maiwok Sub- group), including the Moroak Sandstone and Kyalla Formation. The Neoproterozoic Kiana Group including the Bukalara Sandstone and the Cox Formation rests unconformably above the Roper Group. These formations comprise of a thick sequence of fine grained siltstones and mudstones interbedded with sandstones, which provide excellent isolation between the target zones in the underlying Velkerri Formation and the overlying regional aquifer (Gum Ridge Formation) and a local aquifer (residing in the Inacumba unit). Historically the Inacumba unit has not been penetrated by (shallower) bores on Tanumbirini Station due to the presence of the overlying Cambrian Limestone Aquifer (Gum Ridge Formation), and therefore has not been previously recognised. Bores RN040939 and RN041242 drilled in August and September 2019 respectively, penetrated the Inacumba unit with observations of high variability in reservoir quality and possibly only a few thin intervals of higher permeability contributing to high water yield. Presently, there is limited information available regarding the extent of the Inacumba unit. It is only known from the few bores around the Inacumba 1 well lease. The north-eastern and south-eastern extent can be reasonably defined from the Santos drilling and surface geology. The north-western extent is limited by its absence in Burdo 1. The main unknown is the western and south-western extent. Its total thickness is 390 m in Tanumbirini 1 The Inacumba unit is unconformably overlain by the Cambrian aged Gum Ridge Formation (also known as the Top Springs Limestone, and informally as one interval of the Cambrian Limestone Aquifer).
4.1.6 Groundwater Table 4-3 summarises the regional hydrostratigraphy of the Beetaloo Basin. Table 4-3 Regional hydrostratigraphy of the Beetaloo Basin (taken from Fuller and Knapton, 2015)	4.1.6 Groundwater Table 4-3 summarises the regional hydrostratigraphy of the Beetaloo Basin. Table 4-3 Regional Hydrostratigraphy of the Beetaloo Basin (modified from Fulton and Knapton, 2015)

	PROVINCE	PERIOD /	FORM	IATION	AQUIFER STATUS	THICKNESS	YIELD	AVE. EC	PROVINCE	PERIOD / AGE	FORM	ATION	AQUIFER STATUS	THICKNESS (m)	YIELD (I/s)	AVE. EC (μs/cm)		
		CRETACEOUS	Undiffe	rentiated	Local Aquifer	(m) 0 - 130	(1/5) 0.3 - 4	(µS/CM) 1800	CARPENTARIA BASIN	CRETACEOUS 145 – 66 Ma	Undifferentiated		Undifferentiated		Local Aquifer	0 - 130	0.3 - 4	1800
	DASIN	143 - 00 141	Cambrian	Anthony	REGIONAL AQUIFER	0 – 200	1 - 10	1600			Cambrian Limestone	Anthony Lagoon Beds	REGIONAL AQUIFER	0 - 200	1 - 10	1600		
GEORGINA BASIN	CAMBRIAN	Limestone Aquifer (CLA)	Gum Ridge	REGIONAL AQUIFER	0 - 300	0.3 -	1400	GEORGINA	SINA CAMBRIAN IN 497-541 Ma	Aquifer (CLA)	Gum Ridge Formation	REGIONAL AQUIFER	0 - 300	0.3 - >20	1400			
	497-630 Ma	Antrim	Plateau	REGIONAL AQUITARD	0 - 440	0.3 - 5	900	BASIN		Antrim Plateau Volcanics		REGIONAL AQUITARD Local Aquifer	0 – 440	0.3 - 5	900			
		Bukalara	Sandstone	Local Aquifer	0 - 75	03-5	1000			Inacumba unit		Local Aquifer	0 - 75	0.3 - 5	1000			
			Hayfield Mudstone REGIONAL AQUITARD 0 – 450 – 32000 PROTEROZO	NEO- PROTEROZOIC	Cox Formation		REGIONAL AQUITARD Local Aquifer	0 - 450		32000								
		NOT KNOWN	Jamison Sandstone		Local Aquifer	0 - 150		138000		541-1000 Ma	Bukalara Sandstone		Local Aquifer	0 - 150	-	138000		
	BEETALOO		Kyalla Formation		REGIONAL AQUITARD	0 - 800		-	BEETALOO BASIN		Kyalla Formation		REGIONAL AQUITARD	0 - 800	-	•		
	BASIN (ROPER GROUP)	MESO-			Local Aquifer	0 - 500	0.5 - 5	131000	(ROPER GROUP)	MESO- PROTEROZOIC	Moroak S	andstone	Local Aquifer	0 - 500	0.5 - 5	131000		
	PROTEROZOIC	Velkerri Formation REGIO		REGIONAL AQUITARD	700 - 900				1430-1500 Ma	Velkerri F	ormation	REGIONAL AQUITARD	700 – 900	-				
		1430-1500 Ma	Bessie Ck	Sandstone	Local Aquifer	450	0.5 - 5				Bessie Ck	Sandstone	Local Aquifer	450	0.5 - 5	-		

The major hydrogeological units of the Roper River catchment are the Cambrian limestones of the Daly, Wiso and Georgina Basins. These major groundwater systems provide dry season inputs to the Roper River (Knapton, 2009). The Cambrian Limestone Aquifer (CLA) forms the major water resource in the region and where it is absent, local scale, Proterozoic fractured rock aquifers are utilised with varied success. The Bukalara Sandstone is also considered to be a local aquifer in the Project Area, with the nearest recognised water bores into the Bukalara Sandstone located north of Nutwood Downs Station, approximately 100 km from the Project Area.

The CLA is a regional scale aquifer that provides groundwater resources for pastoral enterprises, domestic bores at homesteads and town water supplies at a number of small communities across the region. The CLA is subdivided into the Anthony Lagoon Beds (ALB) and the Gum Ridge Formation (GRF).

Figure 4-5 shows the elevation of the base of the GRF relative to the proposed well locations. This shows that the GRF is expected to be present at the proposed well locations.

The Anthony Lagoon Beds also overly the GRF across parts of the basin. Figure 4-6 shows the elevation of the top of the Gum Ridge Formation, and the lateral extent of the

The major hydrogeological units of the Roper River catchment are the Cambrian limestones of the Daly, Wiso and Georgina Basins. These major groundwater systems provide dry season inputs to the Roper River (Knapton, 2009). The Cambrian Limestone Aquifer (CLA) forms the major water resource in the region and where it is absent, local scale, Proterozoic fractured rock aquifers are utilised with varied success. The Inacumba unit is considered to be a local aquifer in the Project Area, but of variable reservoir quality.

The CLA is a regional scale aquifer that provides groundwater resources for pastoral enterprises, domestic bores at homesteads and town water supplies at a number of small communities across the region. The CLA is subdivided into the Anthony Lagoon Beds (ALB) and the Gum Ridge Formation (GRF).

Figure 4-5 shows the elevation of the base of the GRF relative to the proposed well locations. This shows that the GRF is expected to be present at the proposed well locations.

The Anthony Lagoon Beds also overly the GRF across parts of the basin. Figure 4-6 shows the elevation of the top of the Gum Ridge Formation, and the lateral extent of the ALB. This map shows that the ALB are not expected to be present at the location of the proposed well sites.

			1					
ALB. This map shows that the ALB a	are not expected to be present	at the location of the	Where fractured and cavernous the GRF can support bore yields of up to 100 L/s although					
proposed well sites.			yields from pastoral bores are typically less than 5 L/s but often reflect the stock water					
Where fractured and cavernous the (GRF can support bore yields of	up to 100 L/s although	demand rather than the potential aquiter yield (Fulton 2018). Bore RN040939 penetrated					
yleids from pastoral bores are typical	ily less than 5 L/s but often refle	ect the stock water	Depth to groundwater in the CLA rep	and of 20 E/3 reported.	tree below ground			
the Bukalara Sandstone with a maxim	niel yield (Fullofi 2016). Bole R	inu40959 penetrated	surface) with groundwater levels ger	lges II0III 32 to 123 IIIBGS (IIIe	the basin margin in			
Depth to group durates in the CLA rep	fight yield of 25 L/S reported.	has below merced	the south-west of EP 161 (Fulton 20)	18)				
Depin to groundwater in the CLA ran	iges from 32 to 123 mBGS (me	the basin margin in	The regional groundwater flow direct	ion in the GPE is north west to	ward Mataranka, whore			
the south-west of EP 161 (Fulton 201	18)	i ille basili margili ill	the aquifer discharges into the Rope	r River approximately 100 km r	walu Matalalika, where			
The regional groundwater flow direct	ion in the CRE is north west to	word Mataranka, whore	Beetaloo Sub-basin where it support	s significant groundwater depe	ndent ecosystems			
the aquifer discharges into the Roper	r River approximately 100 km n	orth-west of the	(Fulton 2018).	e eighneant greananater aepe				
Beetaloo Sub-basin where it support	s significant groundwater deper	ndent ecosystems	The groundwater flow direction in the	GRE broadly follows the north	-west regional flow			
(Fulton 2018).	o olgrinicant groundwater deper		pattern however, gradients are very	flat (0.0001) with little change in	aroundwater			
The groundwater flow direction in the	GRF broadly follows the north	-west regional flow	elevations observed over large dista	nces. This is shown in Figure 4	-8. Large decadal			
pattern however, gradients are verv f	flat (0.0001) with little change in	groundwater	changes in discharge rates to the Ro	oper River suggest that most re	charge of the Roper			
elevations observed over large distar	nces. This is shown in Figure 4-	8. Large decadal	River occurs close to the discharge z	zone, i.e. beyond the Beetaloo	Sub-basin region			
changes in discharge rates to the Ro	per River suggest that most red	charge of the Roper	(Fulton 2018).					
River occurs close to the discharge z	one, i.e. beyond the Beetaloo S	Sub-basin region	Groundwater recharge mechanisms to the CLA are poorly characterised but are likely to be					
(Fulton 2018).			dominated by infiltration through sinkholes and soil cavities. Recharge is likely to be lower					
Groundwater recharge mechanisms	to the CLA are poorly character	rised but are likely to be	in areas where the overlying Cretaceous deposits, which contain clay and mudstone					
dominated by infiltration through sink	holes and soil cavities. Rechar	ge is likely to be lower	sequences, are thick and continuous (Fulton 2018). The Project Area straddles the north-					
in areas where the overlying Cretace	ous deposits, which contain cla	ly and mudstone	east margin of the Georgina Basin. The Gum Ridge Formation (main constituent of the					
sequences, are thick and continuous	(Fulton 2018). The Project Are	ea straddles the north-	CLA in the area) is present across the centre and south-west of the Project Area but					
east margin of the Georgina Basin. I	ne Top Springs Limestone (ma	In constituent of the	principes out in the north-east where roper Group formations outcrop (Fution 2010).					
cLA in the area) is present across the	Pener Group formations outcror	Filton 2018)	Drilling and geophysical logs confirm a local stratigraphy as per Table 4-4. This was					
Drilling and geophysical lags confirm	coper Group formations outcrop	J (Fulloff 2010).	the proposed well sites					
confirmed by geophysical logging of	the Tanumbirini 1 exploration w	ell at the location of the	Table 4-4 Stratigraphy logged at the location of Tanumbirini 1					
proposed well sites			Formation	Depth to formation top (m)	Thickness (m)			
Table 4-4 Stratigraphy logged at the	location of Tanumbirini 1		Undifferentiated Cretaceous	Surface				
Formation	Depth to formation top (m)	Thickness (m)	Gum Ridge Formation	52	150			
Undifferentiated Cretaceous	Surface	43.9	Inacumba unit	202	380			
Gum Ridge Formation	52	150	Cox Formation	582	570			
Bukalara Sandstone	202	380	Bukalara Sandstone	1152	145			
Chambers River Formation	582	570	Kyalla Formation	1297	772			
Bukalorkmi Sandstone	1152	145	Moroak Sandstone	2069	368			
Kyalla Sandstone	1297	772	Velkerri Formation	2437	1482.5			
Moroak Sandstone	2069	368	Bessie Ck Sandstone	3920	>30.5			
Velkerri Formation	2437	1482.5						
			1					

Bessie Ck	Sandstone	3920	>30.5	A baseline survey of water bores in the vicinity of the proposed well sites was undertaken					
A baseline survey 2018. The bore lo Formation is expe are more bores co targeted by water the proposed well Groundwater Elec (average of 1580 4-7 maps the distri- to the proposed w Tanumbirini 1/2H is fresh, ranging b breakdown of the sampling and test Monitoring Bores	r of water bores in portions are shown ected to be absent ompleted in undiffe bores. These frac- sites. etrical Conductivity μ S/cm) and the ph- ribution of total dis- rell sites. Santos h location and Inacu- vetween 800-1000 groundwater chen ing requirements of for Exploration We	the vicinity of the proposed well on in Figure 4-9. This shows that (north and east of the proposed rentiated Proterozoic fractured r stured rock aquifers are not pres (EC) in the CLA ranges from 11 H is typically neutral (6.3 - 7.3) (F solved solids (mg/L) detected in has established groundwater mo imba 1/1H location. The ground mg/L TDS. Table 4-5 provides a histry in the Gum Ridge Formatio putlined in the Preliminary Guide ells in the Beetaloo Sub-basin (D	sites was undertaken in the Gum Ridge well locations) there ock aquifers are ent at the location of 70 - 2260 µS/cm Fulton 2018). Figure all groundwater relative nitoring bores at the water from these bores more detailed on (compliant with the line: Groundwater ENR, 2018)).	in 2018. The bore locations are shown in Figure 4-9. This shows that the Gum Ridge Formation is expected to be absent (east of the proposed well locations) where there are more bores completed in undifferentiated Proterozoic fractured rock aquifers. These fractured rock aquifers are not present at the location of the proposed well sites. Groundwater Electrical Conductivity (EC) in the CLA ranges from 1170 - 2260 μ S/cm (average of 1580 μ S/cm) and the pH is typically neutral (6.3 - 7.3) (Fulton 2018). Figure 4-7 maps the distribution of total dissolved solids (mg/L) detected in all groundwater relative to the proposed well sites. Santos has established groundwater monitoring bores at the Tanumbirini 1/2H location and Inacumba 1/1H location. The groundwater from these bores is fresh, ranging between 800-1000 mg/L TDS. Table 4-5 provides a more detailed breakdown of the groundwater chemistry in the Gum Ridge Formation (compliant with the sampling and testing requirements outlined in the Preliminary Guideline: Groundwater Monitoring Bores for Exploration Wells in the Beetaloo Sub-basin (DENR, 2018)).					
Table 4-10 Enviro project	onmental Values	and/or Sensitivities that may I	be affected by the	Table 4-10 Environmental Values and/or Sensitivities that may be affected by the project					
Environmental Factors	Environmental Values and Sensitivities	Summary		Environmental Factors	Environmental Values and Sensitivities	Summary			
Inland water environmental quality	Groundwater	The Cambrian Limestone Aquif aquifer that provides groundwat pastoral enterprises, domestic to and town water supplies at a nu communities across the region. The groundwater resource in the to connect to the Roper River we discharge supports aquatic, ripat ecosystem function.	er is a regional scale ter resources for pores at homesteads unber of small is area is understood there groundwater arian and floodplain	Inland water environmental quality	Groundwater	The Cambrian Limestone Aquifer is a regional scale aquifer that provides groundwater resources for pastoral enterprises, domestic bores at homesteads and town water supplies at a number of small communities across the region. In addition, the Water Resources Division Technical Report 20/2020 confirms the presence of a newly discovered aquifer, referred to as the Inacumba aquifer. Presently, there is limited information available regarding the extent of the Inacumba aquifer. It is only known from a few			
					the inacumba aquiter. It is only known from a few bores within the vicinity of the Inacumba 1 well lease. The use of this aquifer as a groundwater resource is unlikely and not currently observed.				

				The groundwater resource in this area is understo to connect to the Roper River, where groundwater discharge supports aquatic, riparian and floodplain ecosystem function.					
Table 6.1 Risk As	ssessment			Table 6.1 Risk Assessment					
Potential Impact	Risk source	E	EMP Commitment	Potential Impact	Risk source		EMP Commitment		
Reduction in groundwater and surface water quality	Cross-flow during hydr stimulation, Faults or major structu cross-flow.	aulic fracture fractu	Distance of target shale ormation (Velkerri formation) rom nearest high quality aquifer Cambrian Limestone aquifer) is	Reduction in groundwater and surface water quality	Cross-flow during hydraulic fracture stimulation, Faults or major structures enables cross-flow. Cross-flow during hydraulic fracture stimulation, Faults or major structures enables cross-flow.		Distance of target shale formation from nearest aquifer of use is over 2000 m vertically.		
Impacts to groundwater dependant	Cross-flow during hydr stimulation, Faults or major structu	aulic fracture fracture fracture	Distance of target shale ormation (Velkerri formation) rom nearest high quality aquifer Cambrian Limestone aquifer) is	Impacts to groundwater dependant ecosystems			Distance of target shale formation from nearest aquifer of use is over 2000 m vertically.		
ecosystems cross-flow.		C	over 2000 m.						
7.4.1 Aquifers to The Guideline sta required for aquife where they are pr where it lies above	be monitored tes that groundwater mo ers in the Antony Lagoou esent below the water ta e the water table.	es in the Beetaloo Sub-Basin is Formations (or equivalents) ation is considered an aquifer	7.4.1 Aquifers to be monitored The Guideline states that groundwater monitoring at well sites in the Beetaloo Sub-Basin is required for aquifers in the Antony Lagoon and Gum Ridge Formations (or equivalents) where they are present below the water table. Neither formation is considered an aquifer where it lies above the water table.						
The interpreted hy summarised in Ta Assessment Bran holes as monitorin Lagoon Formation locations. Therefore aquifer is required	vdro-stratigraphy at the ble 7-2. Down-hole gar ch as they became avain by bores. The interpretant was not encountered of ore monitoring of the Gu l in accordance with the	e proposed well sites is ovided to DENR Water but prior to the completion of the confirmed that the Anthony fer at the monitoring well on of the Cambrian Limestone	The interpreted hydro-stratigraphy at the location of each the proposed well sites is summarised in Table 7-2. Down-hole gamma logs were provided to DENR Water Assessment Branch as they became available post-drilling but prior to the completion of the holes as monitoring bores. The interpretation of these logs confirmed that the Anthony Lagoon Formation was not encountered or was not an aquifer at the monitoring well locations. Therefore monitoring of the Gum Ridge Formation of the Cambrian Limestone aquifer is required in accordance with the Guideline.						
Table 7-2 Stratigraphy encountered at the proposed well sites.				Gamma log corre	lations clearly sho	wed that the Gum Rid	ge Formation thins to the east. At Cambrian Limestone aquifer is		
Well / Multi-w	ell pad	Tanumbirini 1/2	H Inacumba 1/1H	present, although not producing water volumes required for use.					
Observed wat	73.43 mbgl Not present	The Water Resources Division Technical Report 20/2020 confirms the presence of a newly discovered aquifer, referred to as the Inacumba aquifer. Presently, there is limited							

Top Gum Ridge Formation		57.0 mbgl	57.0 mbgl 56.0 mbgl		information available regarding the extent of the Inacumba aquifer. It is only known from a few bares within the visibility of the Inacumba 1 well lease. Where this aguifer is baird used					
Top Bukalara	Sandstone	few bores within the vicinity of the Inacumba 1 well lease. Where this aquifer is being used as a water resource and an appropriate water licence for this resource is in place (i.e. Inacumba 1) monitoring of Inacumba aquifer is required in accordance with the Guideline. Table 7-2 Stratigraphy encountered at the proposed well sites.								
				Well / Multi-w	ell pad	•	Tanumbirini 1/2H	Inacumba 1/1H		
				Observed wate	er table	(60 mTVD	73mTVD		
				Top Anthony L	agoon Formation	4	45 mTVD	Not present		
				Top Gum Ridge Formation			57 mTVD	56 mTVD		
				Top Inacumba Unit			202 mTVD	130 mTVD		
Environmental Factors	Environmental Values and Sensitivities	Uncertainty Ranking		Environmental Factors	Environmental Values and Sensitivities	Uncertainty Ranking				
Groundwater extraction	Reduction in groundwater quantity	Type A Risk – Risks are we regional understanding of th understand the risks. Groundwater Monitoring ha will continue.	Groundwater extraction	Groundwater extraction Groundwater extraction Groundwater extraction Groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater groundwater			ype A Risk – Risks are well-understood. The gional understanding of the groundwater is ufficient to understand the risks. roundwater Monitoring has been undertaken and rill continue.			
Groundwater extraction	Reduction in groundwater available for other users	Type A Risk – Risks are well-understood. The regional understanding of the CLA is sufficient to understand the risks. Groundwater Monitoring has been undertaken and will continue.		Groundwater extraction	Reduction in groundwater available for other users	Type A Risk – Risks are well-understood. The regional understanding of the groundwater is sufficient to understand the risks. Groundwater Monitoring has been undertaken and will continue.				