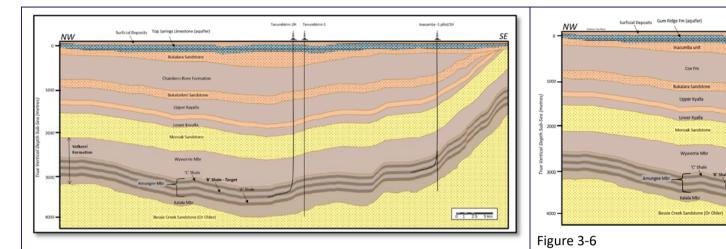
Modification Application – Regulation 23

Interest Hold	ler Santos Q	NT Pty Ltd		hur Basin 2019 g Program	Unique EM ID No		lod 1 Date No.	18/08/2020
Brief Description	Identificati	Resources Division To on of the new Inacumb SEMP modification app	a aquifer at Tanu	mbirini Station has	subsequently trigg	ered a change in the	existing environme	ent relevant to this
Geospatial Files Included?	No							
Does the change in existing environment result in a new, or increased, potential or actual environmental impact or risk?	If a NEW potential or actual environment impact or ris is it provided for in the approved EMP?	k, actual	Does the change in the existing environment require additional mitigation measures to be included?	Has additional stakeholder engagement been conducted?	Does it require additional environmental performance standards and measurement criteria?	Does it affect compliance with Sacred Site Authority Certificates?	Does it affect current rehabilitation, weed, fire, wastewater, erosion and sediment control, spill or emergency response plans?	Will the environmental outcome continue to be achieved and will the impacts and risks be managed to ALARP and acceptable?
No	N/A	N/A	No	No	No	No	No	Yes
Current EMP Tex	ĸt			Ame	nded EMP Text			
Table ES-1: Summ	ary of Environme	ntal Values and Sensitivit	ies	Table	ES-1: Summary of E	nvironmental Values a	nd Sensitivities	
Environmental Factors	Environmental Values and Sensitivities	Summary						
Inland water environmental quality	Groundwater	The Cambrian Limestor aquifer that provides gro pastoral enterprises, do and town water supplies communities across the	oundwater resources mestic bores at hom s at a number of sma	s for esteads				



Environmental Factors	Environmental Values and Sensitivities	Summary
Inland water environmental quality	Groundwater	The Cambrian Limestone Aquifer is a regional scale aquifer that provides groundwater resources for pastoral enterprises, domestic bores at homesteads and town water supplies at a number of small communities across the region. In addition, the Water Resources Division Technical Report 20/2020 confirms the presence of a newly discovered aquifer, referred to as the Inacumba aquifer. Presently, there is limited information available regarding the regional and stratigraphic extent of the Inacumba unit. Its productivity as a water resource aquifer is only confirmed in a few bores within the vicinity of the Inacumba 1 well lease. The value of this aquifer as a groundwater resource is limited due to presence of overlying and highly productive water bearing formations of the Gum Ridge Formation (Cambrian Limestone Aquifer). The Gum Ridge Formation groundwater resource in this area is understood to connect to the Roper River, where groundwater discharge supports aquatic, riparian and floodplain ecosystem function.

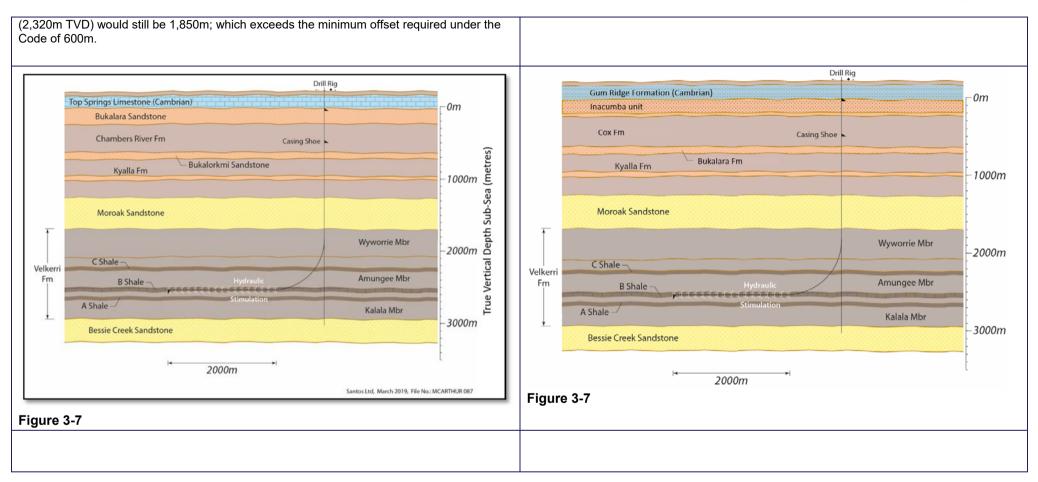
Modification Application – Regulation 23

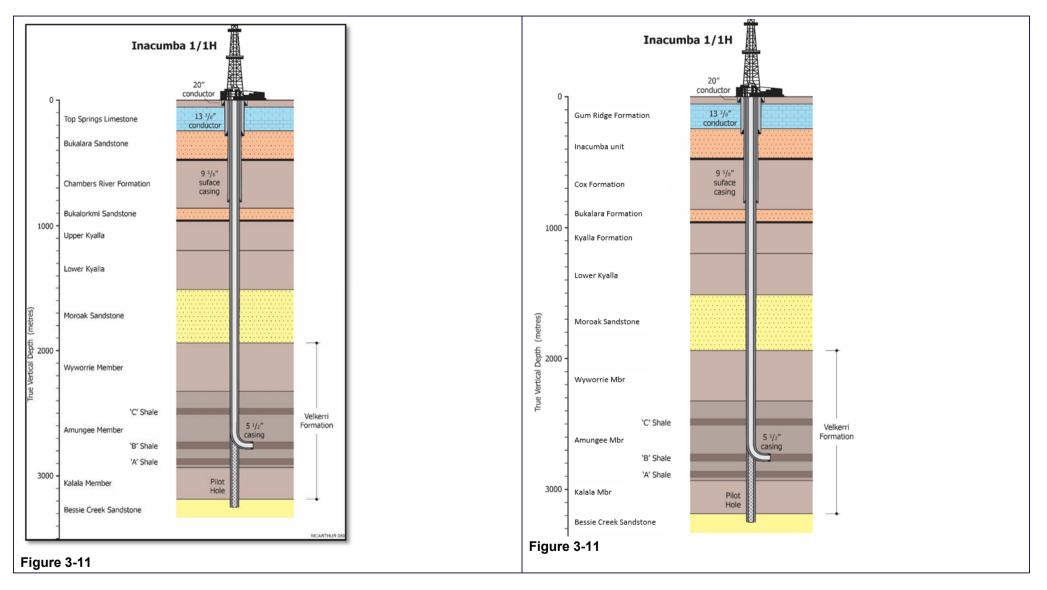
Inacumba -1 nilot/1H

SE

3.3.1.1 Inacumba 1/1H

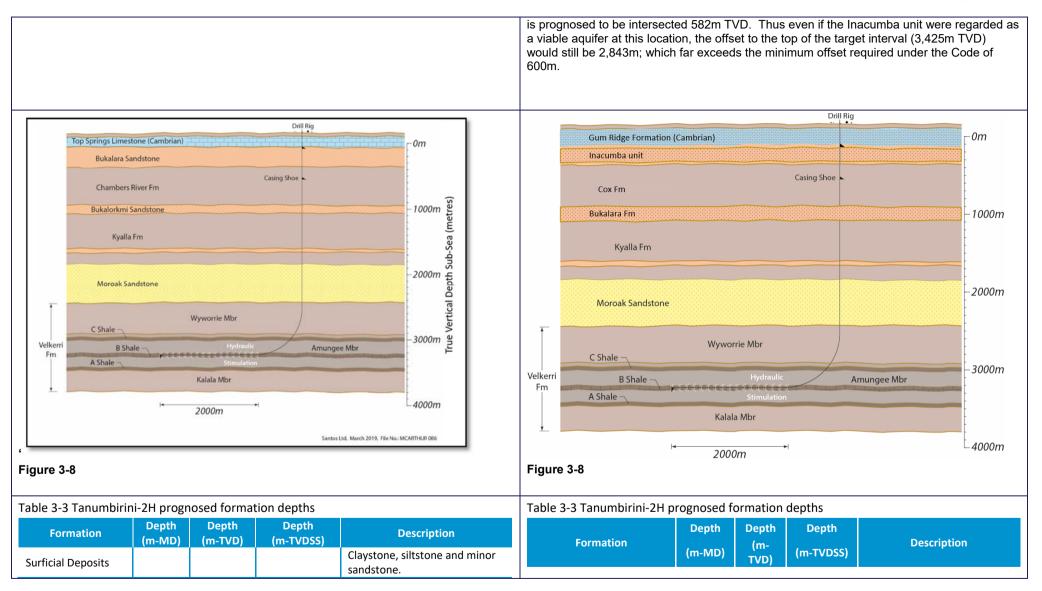
In a success case, following completion of the well drilling operations, the operator proposes to conduct a program of hydraulic fracture stimulations in the horizontal section of the Inacumba-1H well bore, and subsequently flow test the well (these elements of the program will be the subject of a separate EMP). The precise interval targeted by the horizontal section of the well will be confirmed once the results of the vertical pilot well are known, but the shallowest possible target is considered to be the Amungee Member C Shale. The top of this unit is prognosed to be intersected at 2,320m TVD in the vertical pilot well. The deepest aquifer at this location, based on offset well data (including water bores), is expected to be the Top Springs Limestone (Gum Ridge Fm). The base of this unit is prognosed to be intersected at 240m TVD. Therefore a minimum offset of 2,080m is expected between the base of the deepest aquifer and the top of the shallowest primary target of the horizontal section of the well (Figure 3-7). This significantly exceeds the minimum offset, of more than 600m, between top target zone and base aquifer as mandated by the Code of Practice. The Bukalara Sandstone, which is stratigraphically deeper than the Top Springs Limestone, is recognised as an aquifer on a regional basis. However, based available offset well data (including water bores) the Bukalara Sandstone is not considered to be of sufficient quality (porosity and permeability) to constitute an aquifer at this location. The base of the Bukalara Sandstone is prognosed to be intersected 470m TVD. Thus even if the Bukalara Sandstone were regarded as an aquifer at this location, the offset to the top of the target interval


3.3.1.1 Inacumba 1/1H

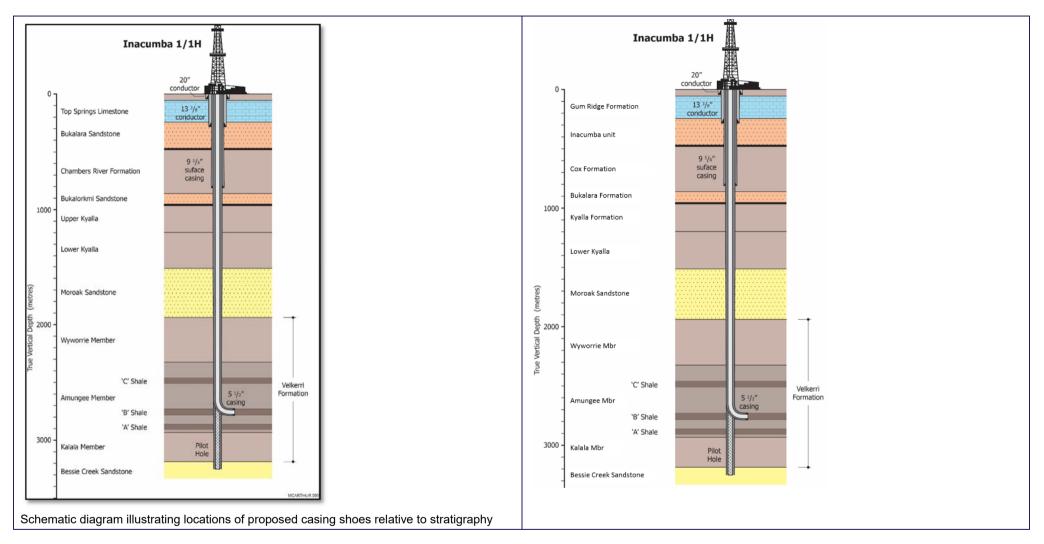

In a success case, following completion of the well drilling operations, the operator proposes to conduct a program of hydraulic fracture stimulations in the horizontal section of the Inacumba-1H well bore, and subsequently flow-test the well (these elements of the program will be the subject of a separate EMP). The precise interval targeted by the horizontal section of the well will be confirmed once the results of the vertical pilot well are known, but the shallowest possible target is considered to be the Amungee Member C Shale. The top of this unit is prognosed to be intersected at 2,350m TVD in the vertical pilot well. The deepest aquifer at this location, based on offset well data (including water bores), is expected to be the Inacumba aquifer. The base of this unit is prognosed to be intersected at 305m TVD. Therefore an offset of 2,045m is expected between the base of the deepest aquifer and the top of the shallowest primary target of the horizontal section of the well (Figure 3-7). This significantly exceeds the minimum offset of Practice.

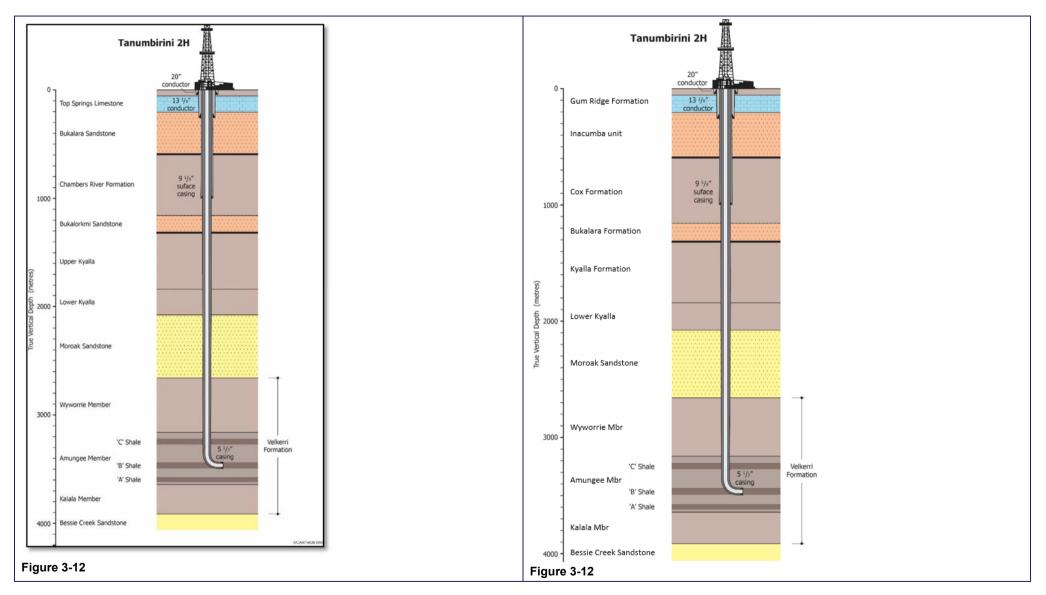
Teacondition 201701 Teacondition

The Inacumba unit, which is stratigraphically deeper than the Gum Ridge Formation, was penetrated by RN040939 and RN041242 and completed as water supply and monitoring bores. The waterbores did not drill to the base of the Inacumba unit that comprises the Inacumba aquifer, however using isopach data from Tanumbirini 1, the base of the Inacumba unit is expected to be at approximately 305mTVD.


Department of Environment and Natural Resources June 2020 | Version 1 Page 3 of 18

able 3-2 Inacumba-	-1 pilot prog	nosed forma	tion depths		Table 3-2 I	nacumba-1 pil	ot prognosed	l formatio	on depths			
Formation	Depth (m-MD)	Depth (m-TVD)	Depth (m-TVDSS)	Description	Fo	ormation	Depth	Depth (m-	Depth (m-	Description		
Surficial Deposits				Claystone, siltstone and minor sandstone.			(m-MD)	TVD)	TVDSS)	Claystone, siltstone and minor		
Top Springs Limestone	22	22	215	Minor grey brecciated 215 limestone, pink to pale brown		eposits				sandstone.		
				cryptalgal laminite Fine to very coarse grained,	Gum Ridge	e Formation	22	22	215	Minor grey brecciated limestone, pink to pale brown		
Bukalara Sandstone Chambers River	247	247	-10	beds and basal pebbly sandstone to conglomerate Thinly interbedded siltstone,		sandstone with minor shale beds and basal pebbly sandstone to conglomerate Thinly interbedded siltstone,		Inacumba unit		105	132	cryptalgal laminite Fine to very coarse grained, friable quartz to lithic sandstone with minor shale beds and basal pebbly sandstone to conglomerate
Formation	477	477	-240	laminated siltstone to claystone and very fine-grained sandstone	Cox Formation		477	477	-240	Thinly interbedded siltstone, laminated siltstone to claystone and very fine-		
Bukalorkmi Sandstone	861	861	-624	White, light grey to brown, fine- to coarse-grained quartz sandstone with lesser fine-						grained sandstone White, light grey to brown,		
Upper Kyalla	957	957	-720	grained micaceous sandstone Interbedded siltstone, mudstone and very fine grained	Bukalara Sandstone		861	861	-624	fine- to coarse-grained quartz sandstone with lesser fine- grained micaceous sandstone		
	557	337	720	quartz sandstone	Upper Kya	Upper Kyalla		957	-720	Interbedded siltstone, mudstone and very fine- grained quartz sandstone		
					Lower Kya	lla	1197	1197	-960	Fine- to coarse-grained quartz sandstone, with interbedded siltstone, mudstone		
					Moroak Sa	andstone	1507	1507	-1270	Medium to fine quartz sandstone		
					Velkerri Formation	Wyworrie Member	1937	1937	-1700	Interbedded and interlaminated mudstone and siltstone		
					Vell	Amungee Member	2317	2317	-2080	Thinly interbedded, dark grey to brown-black organic-rich to -poor claystone, pale grey		


							siltstone and rare, light grey fine-grained sandstone
		1br	C Shale	2462	2462	-2225	Organic-rich carbonaceous with varying clay content shale
		Amungee Mbr	B Shale	2737	2737	-2500	Organic-rich carbonaceous with varying clay content shale
		Am	A Shale	2857	2857	-2620	Organic-rich carbonaceous with varying clay content shale
		Kalala Membe		2927	2927	-2690	Interlaminated grey-green to dark grey, variably carbonaceous claystone and pale grey siltstone, minor fine- grained light grey sandstone
	Bessie Creek Sandstone		3187	3187	-2950	Quartz sandstone: fine to medium and locally coarse grained	
3.3.1.2 Tanumbirini-2H	3.3.1.2 Tar	numbir	ini-2H				
In a success case, following completion of the well drilling operations, the operator proposes							perations, the operator proposes
to conduct a program of hydraulic fracture stimulations in the horizontal section of the Tanumbirini-2H well, and subsequent flow testing (these elements of the program will be the							e horizontal section of the ements of the program will be the
subject of a separate EMP). The primary target for the horizontal section of the well							zontal section of the well
comprises the Amungee Member B Shale (of the Velkerri Formation). The top of this unit is	comprises	the Am	ungee M	ember B Sh	nale (of th	e Velkerri F	ormation). The top of this unit is
prognosed to be intersected at 3,425m TVD. The deepest aquifer expected at this location is							aquifer expected at this location
the Top Springs Limestone (Gum Ridge Formation). The base of this unit is prognosed to be intersected at 202m TVD. Therefore a minimum offset of 3,223m is expected between the							mestone). The base of this unit ninimum offset of 3,223m is
base of the deepest aquifer and the top of the primary target of the horizontal section of the							e primary target of the horizontal
well (Figure 3-8). This significantly exceeds the minimum offset, of more than 600m,							he minimum offset of more than
between top target zone and base aquifer as mandated by the Code of Practice.					•		ted by the Code of Practice.
The Bukalara Sandstone, which is stratigraphically deeper than the Top Springs Limestone, is recognised as an aquifer on a regional basis. However, based available offset well data							ne Gum Ridge Formation, is on available data acquired
(including water bores) the Bukalara Sandstone is not considered to be of sufficient quality	during drilli	ing of o	ffset wells	s (including	water bo	res) the Ina	cumba unit is not considered to
(porosity and permeability) to constitute an aquifer at this location. The base of the Bukalara							in the vicinity of Tanumbirini 2H
Sandstone is prognosed to be intersected 582m TVD. Thus even if the Bukalara Sandstone were regarded as an aquifer at this location, the offset to the top of the target interval							v not constitute an aquifer at this er supply from overlying Gum
(3,223m TVD) would still be 2,641m; which far exceeds the minimum offset required under the Code of 600m.	Ridge Forn	nation a	and the d	epth of the	Inacumba	a unit compr	ising the Inacumba aquifer at this er. The base of the Inacumba unit



Top Springs Limestone	77	77	160	Minor grey brecciated limestone, pink to pale brown cryptalgal laminite	Surficial D	eposits				Claystone, siltstone and minor sandstone.
Bukalara Sandstone	Fine to very coarse grained, friable quartz to lithic		Gum Ridge	Gum Ridge Formation		62	160	Minor grey brecciated limestone, pink to pale brown cryptalgal laminite		
Chambers River	597	597	-360	beds and basal pebbly sandstone to conglomerate Thinly interbedded siltstone, laminated siltstone to claystone	Inacumba	unit	202	202	20	Fine to very coarse grained, friable quartz to lithic sandstone with minor shale beds and basal pebbly sandstone to conglomerate
Formation Bukalorkmi Sandstone	1167	1167	-930	 and very fine-grained sandstone White, light grey to brown, fine- to coarse-grained quartz sandstone with lesser fine- 	Cox Forma	ation	582	582	-360	Thinly interbedded siltstone, laminated siltstone to claystone and very fine- grained sandstone
Upper Kyalla	1312	1312	-1075	grained micaceous sandstone Interbedded siltstone, mudstone and very fine grained quartz sandstone	Bukalara Sandstone		1152	1152	-930	White, light grey to brown, fine- to coarse-grained quartz sandstone with lesser fine- grained micaceous sandstone
					Upper Kya	lla	1297	1297	-1075	Interbedded siltstone, mudstone and very fine- grained quartz sandstone
					Lower Kya	lla	1826	1826	-1604	Fine- to coarse-grained quartz sandstone, with interbedded siltstone, mudstone
					Moroak Sa	andstone	2069	2069	-1847	Medium to fine quartz sandstone
					Ē	Wyworrie Mbr	2644	2644	-2422	Alternating, interbedded and interlaminated mudstone and siltstone
					Velkerri Fm	Amungee Mbr	3143	3143	-2921	Thinly interbedded, dark grey to brown-black organic-rich to -poor claystone, pale grey siltstone and rare, light grey fine-grained sandstone,

	ee Mbr	C Shale	3205	3205	-2983	Organic-rich carbonaceous with varying clay content shale	
	Amunge	B Shale	3425	3425	-3203	Primary Target - Organic-rich carbonaceous with varying clay content shale	
Table 3-5 Drilling Program Environmental Controls		Table 3-	5 Drilling l	Program F	Environment	al Controls	

Activity	Environmental Controls	Detailed WOMP Controls	Activity	Environmental Controls	Detailed WOMP Controls		
Drilling method and casing design	The well will be constructed, maintained and decommissioned so there are at least two verified well barriers between a deep, saline bearing formations and potable aquifers and the surface. Aquifers will be isolated behind cemented concentric casing strings. Figure 3-11 and Figure 3-12 illustrate the proposed casing depths relative to stratigraphy (and the Top Springs Limestone aquifer) for Inacumba- 1/1H and Tanumbirini-2 respectively.	 Shallow aquifers isolated from hydrocarbon bearing zones with more than 2 verified barriers. Aquifer (Top Springs Limestone) isolated with cemented 13-3/8" Conductor 2 casing. Bukalara Sandstone, isolated with cemented 9-5/8" surface casing. The cemented production casing string is planned to provide an additional barrier between producing hydrocarbon bearing zones and shallow aquifers. 	Drilling method and casing design	The well will be constructed, maintained and decommissioned so there are at least two verified well barriers between a deep, saline bearing formations and potable aquifers and the surface. Aquifers will be isolated behind cemented concentric casing strings. Figure 3-11 and Figure 3-12 illustrate the proposed casing depths relative to stratigraphy (and the Gum Ridge Formation aquifer) for Inacumba- 1/1H and Tanumbirini-2 respectively.	Shallow aquifers isolated from hydrocarbon bearing zones with more than 2 verified barriers. Aquifer (Gum Ridge Formation) isolated with cemented 13-3/8" Conductor 2 casing. Inacumba unit (possible aquifer), isolated with cemented 9-5/8" surface casing. The cemented production casing string is planned to provide an additional barrier between producing hydrocarbon bearing zones and shallow aquifers.		

Department of Environment and Natural Resources June 2020 | Version 1 Page 12 of 18

	·
 4.1.3 Geology The Velkerri Formation is overlain by other formations of the Roper Group (Maiwok Subgroup), including the Moroak Sandstone, Kyalla Formation, Bukalorkmi Sandstone and Chambers River Formation. These comprise a thick sequence of fine grained siltstones and mudstones interbedded with sandstones, which provide excellent isolation between the target zones in the underlying Velkerri Formation and the overlying aquifer (Top Springs Formation). The Roper Group sediments are unconformably overlain by Neoproterozoic sediments of the northern Georgina Basin, which constitute the Kiana Group Bukalara Sandstone at this location. On a regional basis the Bukalara Sandstone is recognised as an aquifer. However, based on available offset well data (including water bores) the Bukalara Sandstone is not considered to be of sufficient quality (porosity and permeability) to constitute an aquifer at the proposed well locations. The Bukalara Sandstone is unconformably overlain by the Cambrian age Top Springs Limestone (also known as the Gum Ridge Formation, and informally as the Cambrian Limestone Aquifer). This unit is recognised as a regional aquifer and is considered to be the deepest aquifer present at the proposed well locations. The Top Springs Limestone is unconformably overlain by undifferentiated Cretaceous to Quaternary sediments. 	 4.1.3 Geology The Velkerri Formation is overlain by other formations of the Roper Group (Maiwok Subgroup), including the Moroak Sandstone and Kyalla Formation. The Neoproterozoic Kiana Group including the Bukalara Sandstone and the Cox Formation rests unconformably above the Roper Group. These formations comprise a thick sequence of fine grained siltstones and mudstones interbedded with sandstones, which provide excellent isolation between the target zones in the underlying Velkerri Formation and the overlying regional aquifer (Gum Ridge Formation) and a local aquifer (Inacumba unit). Historically the Inacumba unit has not been pnetrated by (shallower) bores on Tanumbirini Station due to the presence of the overlying Cambrian Limestone Aquifer (Gum Ridge Formation), and therefore has not been previously recognised,. Bores RN040939 and RN041242 drilled in August and September 2019 respectively, penetrated the Inacumba aquifer with observations of high variability in reservoir quality and possibly only a few thin intervals of higher permeability contributing to high water yield. Presently, there is limited information available regarding the extent of the Inacumba unit. It is only known from the few bores around the Inacumba 1 well lease. The north-eastern and south-eastern extent is limited by its absence in Burdo 1. The main unknown is the western and south-western extent. Based on this knowledge 1,500 km² is a reasonable estimate of the unit's extent. Its total thickness is 390 m in Tanumbirini 1. The Inacumba unit is unconformably overlain by the Cambrian aged Gum Ridge Formation (also known as the Top Springs Limestone, and informally as one interval of the Cambrian Limestone Aquifer).
4.1.6 Groundwater Table 4-3 summarises the regional hydrostratigraphy of the Beetaloo Basin. Table 4-3 Regional hydrostratigraphy of the Beetaloo Basin (taken from Fuller and Knapton, 2015)	4.1.6 Groundwater Table 4-3 summarises the regional hydrostratigraphy of the Beetaloo Sub-basin. Table 4-3 Regional hydrostratigraphy of the Beetaloo Sub-basin (taken from Fulton and Knapton, 2015)

PROVINCE	PERIOD / AGE	FORMATION		AQUIFER STATUS	THICKNESS (m)	YIELD (I/s)	AVE. EC (µs/cm)
CARPENTARIA BASIN	CRETACEOUS 145 – 66 Ma	Undifferentiated		Local Aquifer	0 - 130	0.3 - 4	1800
		Cambrian Limestone	Anthony Lagoon Beds	REGIONAL AQUIFER	0 – 200	1 - 10	1600
GEORGINA BASIN	CAMBRIAN	Aquifer (CLA)	Gum Ridge Formation	REGIONAL AQUIFER	0 - 300	0.3 - >20	1400
BASIN	497-630 Ma	Antrim Plateau Volcanics		REGIONAL AQUITARD Local Aquifer	0 - 440	0.3 - 5	900
		Bukalara	Sandstone	Local Aquifer	0 - 75	0.3 - 5	1000
		Hayfield I	Mudstone	REGIONAL AQUITARD Local Aquifer	0 - 450		32000
	NOT KNOWN	Jamison S	Sandstone	Local Aquifer	0 - 150	-	138000
BEETALOO BASIN		Kyalla Fo	ormation	REGIONAL AQUITARD	0 - 800	-	-
ROPER GROUP)	MESO- PROTEROZOIC	Moroak S	Sandstone	Local Aquifer	0 – 500	0.5 - 5	131000
	1430-1500 Ma	Velkerri F	ormation	REGIONAL AQUITARD	700 – 900	-	-
		Bessie Ck	Sandstone	Local Aquifer	450	0.5 - 5	-

The major hydrogeological units of the Roper River catchment are the Cambrian limestones of the Daly, Wiso and Georgina Basins. These major groundwater systems provide dry season inputs to the Roper River (Knapton, 2009). The Cambrian Limestone Aquifer (CLA) forms the major water resource in the region and where it is absent, local scale, Proterozoic fractured rock aquifers are utilised with varied success. The Bukalara Sandstone is not considered to be a local aquifer in the Project Area. The nearest water bores into the Bukalara Sandstone are located north of Nutwood Downs Station, approximately 100 km from the Project Area.

The CLA is a regional scale aquifer that provides groundwater resources for pastoral enterprises, domestic bores at homesteads and town water supplies at a number of small communities across the region. The CLA is subdivided into the Anthony Lagoon Beds (ALB) and the Gum Ridge Formation (GRF). The CLA is the only aquifer at the location of the proposed activities, as confirmed by hydrogeologists DENR. There are no other formations present which are considered aquifers.

Figure 4-5 shows the elevation of the base of the GRF relative to the proposed well locations. This shows that the GRF is expected to be present at the proposed well locations.

PROVINCE	PERIOD / AGE	FORM	ATION	AQUIFER STATUS	THICKNESS (m)	YIELD (I/s)	AVE. EC (μs/cm)
CARPENTARIA BASIN	CRETACEOUS 145 – 66 Ma	Undifferentiated		Local Aquifer	0 - 130	0.3 - 4	1800
		Cambrian Limestone	Anthony Lagoon Beds	REGIONAL AQUIFER	0 - 200	1 - 10	1600
GEORGINA	CAMBRIAN	Aquifer (CLA)	Gum Ridge Formation	REGIONAL AQUIFER	0 - 300	0.3 - >20	1400
BASIN	BASIN 497-541 Ma		Plateau anics	REGIONAL AQUITARD Local Aquifer	0 - 440	0.3 - 5	900
		Inacum	nba unit	Local Aquifer	0 – 75 0.3 - 5		1000
	NEO- PROTEROZOIC	Cox Fo	rmation	REGIONAL AQUITARD Local Aquifer	0 - 450		32000
	541-1000 Ma	Bukalara	Sandstone	Local Aquifer	0 - 150	-	138000
BEETALOO BASIN		Kyalla Fo	ormation	REGIONAL AQUITARD	0 - 800	-	-
(ROPER GROUP)	MESO- PROTEROZOIC	Moroak S	andstone	Local Aquifer	0 - 500	0.5 - 5	131000
	1430-1500 Ma	Velkerri F	ormation	REGIONAL AQUITARD	700 – 900	-	
		Bessie Ck	Sandstone	Local Aquifer	450	0.5 - 5	-

The major hydrogeological units of the Roper River catchment are the Cambrian limestones of the Daly, Wiso and Georgina Basins. These major groundwater systems provide dry season inputs to the Roper River (Knapton, 2009). The Cambrian Limestone Aquifer (CLA) forms the major water resource in the region and where it is absent, local scale, Proterozoic fractured rock aquifers are utilised with varied success. The Inacumba unit is considered to be a local aquifer in the Project Area.

The CLA is a regional scale aquifer that provides groundwater resources for pastoral enterprises, domestic bores at homesteads and town water supplies at a number of small communities across the region. The CLA is subdivided into the Anthony Lagoon Beds (ALB) and the Gum Ridge Formation (GRF).

Figure 4-5 shows the elevation of the base of the GRF relative to the proposed well locations. This shows that the GRF is expected to be present at the proposed well locations.

The Anthony Lagoon Beds also overly the GRF across parts of the basin. Figure 4-6 shows the elevation of the top of the Gum Ridge Formation, and the lateral extent of the ALB. This map shows that the ALB are not expected to be present at the location of the proposed well sites.

380

570

145 772

368

1482.5

>30.5

The Anthony Lagoon Beds also overly the GRF across parts of the basin. Figure 4-6 shows	Where fractured and cavernous the G				
the elevation of the top of the Gum Ridge Formation, and the lateral extent of the ALB. This map shows that the ALB are not expected to be present at the location of the proposed well	yields from pastoral bores are typicall demand rather than the potential aqui		ct the stock water		
sites.	Depth to groundwater in the CLA range	ges from 32 to 123 mBGS (met	res below ground		
Where fractured and cavernous the GRF can support bore yields of up to 100 l/s although yields from pastoral bores are typically less than 5 L/s but often reflect the stock water	surface) with groundwater levels gene south-west of EP 161 (Fulton 2018).	erally deeper further away from	the basin margin in the		
demand rather than the potential aquifer yield (Fulton 2018).	The regional groundwater flow direction	on in the GRF is north-west tow	vard Mataranka, where		
Depth to groundwater in the CLA ranges from 32 to 123 mBGS (metres below ground	the aquifer discharges into the Roper				
surface) with groundwater levels generally deeper further away from the basin margin in the	Sub-basin where it supports significar	nt groundwater dependent ecos	systems (Fulton 2018).		
south-west of EP 161 (Fulton 2018).	The groundwater flow direction in the				
The regional groundwater flow direction in the GRF is north-west toward Mataranka, where	pattern however, gradients are very fl				
the aquifer discharges into the Roper River approximately 100 km north-west of the Beetaloo	observed over large distances. This is shown in Figure 4-8. Large decadal changes in discharge rates to the Roper River suggest that most recharge of the Roper River occurs close to the discharge zone, i.e. beyond the Beetaloo Sub-basin region (Fulton 2018).				
Basin where it supports significant groundwater dependent ecosystems (Fulton 2018).					
The groundwater flow direction in the GRF broadly follows the north-west regional flow		-	, ,		
pattern however, gradients are very flat (0.0001) with little change in groundwater elevations observed over large distances. This is shown in Figure 4-8. Large decadal changes in	Groundwater recharge mechanisms to dominated by infiltration through sinkl				
discharge rates to the Roper River suggest that most recharge of the Roper River occurs	areas where the overlying Cretaceous				
close to the discharge zone, i.e. beyond the Beetaloo Sub-basin region (Fulton 2018).	sequences, are thick and continuous				
Groundwater recharge mechanisms to the CLA are poorly characterised but are likely to be	east margin of the Georgina Basin. Tl				
dominated by infiltration through sinkholes and soil cavities. Recharge is likely to be lower in	in the area) is present across the cen				
areas where the overlying Cretaceous deposits, which contain clay and mudstone	in the north-east where Roper Group				
sequences, are thick and continuous (Fulton 2018). The Project Area straddles the north-	Drilling and geophysical logs confirm				
east margin of the Georgina Basin. The Top Springs Limestone (main constituent of the CLA	in proposed well sites.				
in the area) is present across the centre and south-west of the Project Area but pinches out in the parth east where Pener Group formations outgrap (Fulton 2018)					
the north-east where Roper Group formations outcrop (Fulton 2018).	Table 4-4 Stratigraphy logged at the l				
Drilling and geophysical logs confirm a local stratigraphy as per Table 4-4. This was confirmed by geophysical logging of the Tanumbirini 1 exploration well at the location of the	Formation	Depth to formation top (m)	Thickness (m)		
proposed well sites.	Undifferentiated Cretaceous	Surface	43.9		
Table 4.4.0 the formation is a state to a state of Table to be in the formation is the	Gum Ridge Formation	52	150		

Inacumba unit

Cox Formation

Kyalla Formation

Moroak Sandstone

Velkerri Formation

Bessie Ck Sandstone

Bukalara Sandstone

Table 4-4 Stratigraphy logged at the location of Tanumbirini 1

Formation	Depth to formation top (m)	Thickness (m)						
Undifferentiated Cretaceous	Surface	43.9						
Gum Ridge Formation	52	150						
Bukalara Sandstone	202	380						
Chambers River Formation	582	570						
Bukalorkmi Sandstone	1152	145						
Kyalla Sandstone	1297	772						
Moroak Sandstone	2069	368						
Velkerri Formation	2437	1482.5						
Bessie Ck Sandstone	3920	>30.5						

A baseline survey of water bores in the vicinity of the proposed well sites was undertaken in 2018. The bore locations are shown in Figure 4-9. This shows that the Gum Ridge Formation is expected to be absent (east of the proposed well locations) where there are

202

582

1152

1297

2069

2437

3920

2018. The bore is Formation is experimental more bores composed water bores. The well sites. Groundwater Elect (average of 1580 maps the distribut the proposed well Tanumbirini-1/2H	ocations are shown ected to be absent eleted in undifferent ese fractured rock a ctrical Conductivity μ S/cm) and the pH tion of total dissolve I sites. Santos has	the vicinity of the proposed well sites was undertaken in n in Figure 4-9. This shows that the Gum Ridge (north and east of the proposed well locations) there are iated Proterozoic fractured rock aquifers are targeted by quifers are not present at the location of the proposed (EC) in the CLA ranges from 1170 - 2260 μ S/cm t is typically neutral (6.3 - 7.3) (Fulton 2018). Figure 4-7 ed solids (mg/L) detected in all groundwater relative to established groundwater monitoring bores at the imba-1/1H location. The groundwater from these bores mg/L TDS.	more bores completed in undifferentiated Proterozoic fractured rock aquifers. These fractured rock aquifers are not present at the location of the proposed well sites. Groundwater Electrical Conductivity (EC) in the CLA ranges from 1170 - 2260 µS/cm (average of 1580 µS/cm) and the pH is typically neutral (6.3 - 7.3) (Fulton 2018). Figure 4-7 maps the distribution of total dissolved solids (mg/L) detected in all groundwater relative to the proposed well sites. Santos has established groundwater monitoring bores at the Tanumbirini-1/2H location and Inacumba-1/1H location. The groundwater from these bores is fresh, ranging between 800-1000 mg/L TDS.			
Table 4-10 Environmental Values and/or Sensitivities that may be affected by the project			Table 4-10 Environmental Values and/or Sensitivities that may be affected by the project			
Environmental Factors	Environmental Values and Sensitivities	Summary				
Inland water environmental quality	Groundwater	The Cambrian Limestone Aquifer is a regional scale aquifer that provides groundwater resources for pastoral enterprises, domestic bores at homesteads and town water supplies at a number of small communities across the region.				

Environmental Factors	Environmental Values and Sensitivities	Summary The Cambrian Limestone Aquifer is a regional scale aquifer that provides groundwater resources for pastoral enterprises, domestic bores at homesteads and town water supplies at a number of small communities across the region. In addition, the Water
Inland water environmental quality	Groundwater	Resources Division Technical Report 20/2020 confirms the presence of a newly discovered aquifer, referred to as the Inacumba aquifer. Presently, there is limited information available regarding the regional and stratigraphic extent of the Inacumba unit. Its productivity as a water resource aquifer is only confirmed in a few bores within the vicinity of the Inacumba 1 well lease. The value of this aquifer as a groundwater resource is limited due to presence of overlying and highly productive water bearing formations of the Gum Ridge Formation (Cambrian Limestone Aquifer). The Gum Ridge Formation groundwater resource in this area is understood to connect to the Roper River, where groundwater discharge supports aquatic, riparian and floodplain ecosystem function.
Table 6-1		

Environmental Factors	Environmental Values and Sensitivities	Uncertainty Ranking	Environmental Factors	Environmental Values and Sensitivities	Uncertainty Ranking
Groundwater extraction	Reduction in groundwater quantity	Type A Risk – Risks are well-understood. The regional understanding of the CLA is sufficient to understand the risks. Groundwater Monitoring has been undertaken and will continue.	Groundwater extraction	Reduction in groundwater quantity	Type A Risk – Risks are well-understood. The regional understanding of the groundwater is sufficient to understand the risks. Groundwater Monitoring has been undertaken and will continue.
Groundwater extraction	Reduction in groundwater available for other users	Type A Risk – Risks are well-understood. The regional understanding of the CLA is sufficient to understand the risks. Groundwater Monitoring has been undertaken and will continue.	Groundwater extraction	Reduction in groundwater available for other users	Type A Risk – Risks are well-understood. The regional understanding of the groundwater is sufficient to understand the risks. Groundwater Monitoring has been undertaken and will continue.